Merhaba bu yazımda WordPress üzerinde kodları görselleştirmek için kullanılan bir plugin olan Enlighter – Customizable Syntax Highlighter‘ın stil seçeneklerini gösteriyorum.
Blog’um içerisinde kod satırlarını göstermek için kendi stilimi oluşturduğum ve kullanacağım son temayı da en son kısımda görebilirsiniz.
Englighter
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Godzilla
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Beyond
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Classic
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
MowTwo
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Eclipse
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Droide
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Minimal
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Atomic
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Rowhammer
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Bootsrap4
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Dracula
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Monokai
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])
Custom
import pickle import streamlit as st import requests import os from PIL import Image from dotenv import load_dotenv import pandas as pd logo = Image.open('images/logo.png') frame = Image.open('images/frame.png') load_dotenv() API = os.getenv('MOVIE_API') st.set_page_config( page_title="Film Tavsiye Sistemi", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", ) def get_movie_poster(movie_id): url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key={API}&language=en-US" data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def content_based_recommender(title, cosine_sim, dataframe): # index'leri olusturma indices = pd.Series(dataframe.index, index=dataframe['original_title']) indices = indices[~indices.index.duplicated(keep='last')] # title'ın index'ini yakalama movie_index = indices[title] # title'a gore benzerlik skorlarını hesapalama similarity_scores = pd.DataFrame(cosine_sim[movie_index], columns=["score"]) # kendisi haric ilk 10 filmi getirme movie_indices = similarity_scores.sort_values("score", ascending=False)[1:6].index movie_names = [] movie_posters = [] for i in movie_indices[0:6]: # fetch the movie poster movie_id = dataframe.iloc[i].id movie_posters.append(get_movie_poster(movie_id)) movie_names.append(movies.iloc[i]['original_title']) return movie_names, movie_posters col1, col2, col3 = st.columns(3) with col1: st.image(frame, width=125) with col2: st.image(logo, caption='🧠 Miull, Skills of tomorrow!', width=350) with col3: st.markdown("[![Foo](https://img.icons8.com/material-outlined/96/000000/github.png)](https://github.com/oguzerdo)") st.header('Film Tavsiye Sistemi') movies = pickle.load(open('model/movie_list.pkl', 'rb')) cosine_sim = pickle.load(open('model/cosine_sim.pkl', 'rb')) movie_list = movies['original_title'].values # Tüm film isimlerini alma selected_movie = st.selectbox("Açılır menüden film seçiniz.", movie_list) # Açılır menüde film isimlerini gösterme. if st.button('Tavsiyeleri gör'): movie_names, movie_posters = content_based_recommender(selected_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4]) if st.button('Şansımı denemek istiyorum'): random_movie = movies['original_title'].sample(1).values[0] st.subheader(random_movie) movie_names, movie_posters = content_based_recommender(random_movie, cosine_sim, movies) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(movie_names[0]) st.image(movie_posters[0]) with col2: st.text(movie_names[1]) st.image(movie_posters[1]) with col3: st.text(movie_names[2]) st.image(movie_posters[2]) with col4: st.text(movie_names[3]) st.image(movie_posters[3]) with col5: st.text(movie_names[4]) st.image(movie_posters[4])